Trigonometric Co-ratios

Learn to convert and use trigonometric co-ratio functions to solve trigonometric problems.

Trigonometric co-ratios

Angle \(sin\) \(cos\) \(tan\) \(csc\) \(sec\) \(cot\)
\(-θ\)
\(-sin⁡θ\)
\(+cos⁡θ\)
\(-tan⁡θ\)
\(-csc θ\)
\(+sec⁡θ\)
\(-cot⁡θ\)
\(90°-θ\)
\(+cos⁡θ\)
\(+sin⁡θ\)
\(+cot⁡θ\)
\(+sec⁡θ\)
\(+csc⁡θ\)
\(+tan⁡θ\)
\(90°+θ\)
\(+cos⁡θ\)
\(-sin⁡θ\)
\(-cot⁡θ\)
\(+sec⁡θ\)
\(-csc⁡θ\)
\(-tan⁡θ\)
\(180°-θ\)
\(+sin⁡θ\)
\(-cos⁡θ\)
\(-tan⁡θ\)
\(+csc⁡θ\)
\(-sec⁡θ\)
\(-cot⁡θ\)
\(180°+θ\)
\(-sin⁡θ\)
\(-cos⁡θ\)
\(+tan⁡θ\)
\(-csc⁡θ\)
\(-sec⁡θ\)
\(+cot⁡θ\)
\(270°-θ\)
\(-cos⁡θ\)
\(-sin⁡θ\)
\(+cot⁡θ\)
\(-sec⁡θ\)
\(-csc⁡θ\)
\(+tan⁡θ\)
\(270°+θ\)
\(-cos⁡θ\)
\(+sin⁡θ\)
\(-cot⁡θ\)
\(-sec⁡θ\)
\(+csc⁡θ\)
\(-tan⁡θ\)
\(360°-θ\)
\(-sin⁡θ\)
\(+cos⁡θ\)
\(-tan⁡θ\)
\(-csc⁡θ\)
\(+sec⁡θ\)
\(-cot⁡θ\)
\(360°+θ\)
\(+sin⁡θ\)
\(+cos⁡θ\)
\(+tan⁡θ\)
\(+csc⁡θ\)
\(+sec⁡θ\)
\(+cot⁡θ\)

\(Radian=Degrees\)
\(π/2=90°\)
\( π=180°\)
\(3π/2=270°\)
\(2π=360°\)

Inter-conversion of degrees and radians
\(Degrees×\frac{π}{180°}=Radians\)
\(Radians×\frac{180°}{π}=Degrees\)

...learn better, be better

For trigonometry 1-1 tutoring classes, contact us.