Vectors Explained

MCV4U Vectors: Complete Guide with Examples

MCV4U: Complete Vector Guide

1. Vector Fundamentals

1.1 Geometric vs Algebraic Vectors

Geometric: Directed line segment \( \overrightarrow{AB} \)

Algebraic: \( \mathbf{v} = \langle v_x, v_y, v_z \rangle \)

From \( A(1,2) \) to \( B(4,6) \): \( \mathbf{v} = \langle 3,4 \rangle \)

2. Vector Operations

2.1 Addition/Subtraction

Component-wise operations: \[ \mathbf{u} \pm \mathbf{v} = \langle u_x \pm v_x, u_y \pm v_y, u_z \pm v_z \rangle \]

2.2 Scalar Multiplication

\( k\mathbf{v} = \langle kv_x, kv_y, kv_z \rangle \)

3. Key Vector Concepts

3.1 Unit Vectors

\( \hat{v} = \frac{\mathbf{v}}{|\mathbf{v}|} \) (Direction vector)

Standard basis: \( \hat{i} = \langle 1,0,0 \rangle \), \( \hat{j} \), \( \hat{k} \)

3.2 Magnitude

\( |\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2} \)

4. Dot Product

\( \mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}|\cos\theta = u_xv_x + u_yv_y + u_zv_z \)

Application: Angle Between Vectors

\( \cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \)

5. Cross Product

\( \mathbf{u} \times \mathbf{v} = |\mathbf{u}||\mathbf{v}|\sin\theta\ \hat{n} \)

Determinant formula with \( \hat{i}, \hat{j}, \hat{k} \) components

Right-Hand Rule Application

Used to determine direction of resulting vector

6. Vector Projections

6.1 Scalar Projection

\( \text{comp}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|} \)

6.2 Vector Projection

\( \text{proj}_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right)\mathbf{v} \)

7. Real-World Applications

  • Force analysis in physics
  • Computer graphics transformations
  • Engineering stress calculations

8. MCV4U Practice Problems

Problem 1: Cross Product

Find \( \mathbf{a} \times \mathbf{b} \) where \( \mathbf{a} = \langle 2, -1, 3 \rangle \) and \( \mathbf{b} = \langle 4, 0, -2 \rangle \)

Solution

\[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ 4 & 0 & -2 \end{vmatrix} = \langle 2, 16, 4 \rangle \]

9. Key Takeaways

  • Vectors have magnitude and direction
  • Cross product results in a perpendicular vector
  • Dot product helps find angles between vectors
  • Projections essential for force decomposition

© The Study Zone. All rights reserved. Unauthorized distribution prohibited.