Operations with integers



A number without a decimal or fractional element is known as an integer, which includes both positive and negative numbers, including zero. Some examples are \(-3, -2, 0, 2, 3\) etc. Every integer has an opposite. For example, \(3\) has opposite as \(-3\) and \(-5\) has opposite as \(5\). 

Absolute value: A number's absolute value is its numerical value without taking the sign into consideration, and it is represented by the sign \(|a|\); where a is any number. \(e.g.\)\(|a|=a\) and \(|-a|=a\) 

For any two integers \(a\) and \(b\) 

 1. \(a+b=\) sum (addition) of both integers 

               \(e.g.\) \(3+5=8\) 

 2. \((i)\) \(a-b=+\)(difference (subtraction) of both integers) if \(|a|>|b|\) 

               \(e.g.\) \(7-5=+2\) because \(|7|>|5|\) 

 \((ii)\) \(a-b = -\)(difference (subtraction) of both integers) if \(|b|>|a|\) 

               \(e.g.\) \(5-7=-2\) because \(|7|>|5|\) 

 3. \((i)\) \(a+(-b)=a-b\) 
                            \(=+\)(difference (subtraction) of both integers) if \(|a|>|b|\) 

               \(e.g.\) \(7+(-5)=7-5\) 
                                        \(=+2\) because \(|7|>|5|\) 

\((ii)\) \(a+(-b)=a-b\) 
                            \(= -\)(difference (subtraction) of both integers) if \(|b|>|a|\) 

               \(e.g.\) \(5+(-7)=5-7\) 
                                        \(=-2\) because \(|7|>|5|\) 

 4. \((i)\) \(-a+b=+\)(difference (subtraction) of both integers) if \(|b|>|a|\) 

               \(e.g.\) \(-5+7=-2\) because \(|7|>|5|\) 

 \((ii)\) \(-a+b=-\)(difference (subtraction) of both integers) if \(|a|>|b| \) 

               \(e.g.\) \(-7+5=-2\) because \(|7|>|5|\) 

 5. \(-a+(-b)=-a-b\) 
                        \(=-\)(sum (addition) of both integers) 
               \(e.g.\) \(-7+(-5)=-7-5\) 
                                           \(=-12\) 

 6. \((i)\) \(-a-(-b)=-a+b\) 
                            \(=+\)(difference (subtraction) of both integers) if \(|b|>|a|\) 

               \(e.g.\) \(-5—7=-5+7\) 
                                     \(=-2\) because \(|7|>|5|\) 

\((ii)\) \(-a-(-b)=-a+b\) 
                            \(=-\)(difference (subtraction) of both integers) if \(|a|>|b|\) 

               \(e.g.\) \(-7+5=-7(-5)\) 
                                     \(=-2\) because \(|7|>|5|\) 

 7. \(a-(-b)=a+b \) \(=\)sum (addition) of both integers 
               \(e.g.\) \(3-(-5)=3+5=8\) 

Note: 1) If we have opposite signs in and before the parenthesis, it will turn negative. \(e.g.\) \(-(+a)=-a\), also \(+(-a)=-a\) 

 2) If we have same signs in and before parenthesis, it will turn into negative. \(e.g.\) \(-(-a)=+a\), also \(+(+a)=+a\)