How to apply function transformations?

Complete Guide to Function Transformations:Order of Operations & Examples

Complete Lesson: Function Transformation Order of Operations

1. General Rule: Inside vs. Outside Transformations

Transformations are split into two groups:

  • Inside the function (horizontal transformations): Affect \( x \)-values
  • Outside the function (vertical transformations): Affect \( y \)-values

2. Order of Operations

Horizontal Transformations (applied first, in reverse order)

  1. Stretch/compression by \( \frac{1}{|b|} \)

    \( f(2x) \) compresses horizontally by \( \frac{1}{2} \)

  2. Reflection if \( b < 0 \)

    \( f(-x) \) reflects over \( y \)-axis

  3. Horizontal shift by \( h \)

    \( f(x - 3) \) shifts right 3 units

Vertical Transformations (applied last, in normal order)

  1. Stretch/compression by \( |a| \)

    \( 2f(x) \) stretches vertically by 2

  2. Reflection if \( a < 0 \)

    \( -f(x) \) reflects over \( x \)-axis

  3. Vertical shift by \( k \)

    \( f(x) + 5 \) shifts up 5 units

3. Why Order Matters

Horizontal transformations are reversed:

For \( f(2(x - 3)) \):

\[ \begin{align*} 1. &\ x \rightarrow x - 3 \quad \text{(shift right 3)} \\ 2. &\ x \rightarrow 2(x - 3) \quad \text{(compress by } \frac{1}{2}\text{)} \end{align*} \]

Vertical transformations follow natural order:

For \( -2f(x) + 5 \):

\[ \begin{align*} 1. &\ y \rightarrow 2f(x) \quad \text{(stretch by 2)} \\ 2. &\ y \rightarrow -2f(x) \quad \text{(reflect over x-axis)} \\ 3. &\ y \rightarrow -2f(x) + 5 \quad \text{(shift up 5)} \end{align*} \]

4. Complete Example: Applying All Transformations

Original function: \( f(x) = \sqrt{x} \)

Transformed function: \( y = -3\sqrt{-2(x + 1)} + 4 \)

Step 1: Horizontal Transformations

\[ \begin{align*} \sqrt{x} & \rightarrow \sqrt{2x} \quad \text{(compress by } \frac{1}{2}\text{)} \\ & \rightarrow \sqrt{-2x} \quad \text{(reflect over y-axis)} \\ & \rightarrow \sqrt{-2(x + 1)} \quad \text{(shift left 1)} \end{align*} \] <--!more-->

Step 2: Vertical Transformations

\[ \begin{align*} \sqrt{-2(x + 1)} & \rightarrow 3\sqrt{-2(x + 1)} \quad \text{(stretch by 3)} \\ & \rightarrow -3\sqrt{-2(x + 1)} \quad \text{(reflect over x-axis)} \\ & \rightarrow -3\sqrt{-2(x + 1)} + 4 \quad \text{(shift up 4)} \end{align*} \]

5. Key Takeaways

  • ✅ Always apply all transformations
  • ✅ Horizontal order: SRS (Stretch → Reflect → Shift)
  • ✅ Vertical order: SRS (Stretch → Reflect → Shift)
  • ✅ Practice with \( f(x) = x \) first

6. Common Pitfalls to Avoid

  • ⚠️ Applying shifts before stretches
  • ⚠️ Mixing horizontal/vertical order
  • ⚠️ Ignoring negative signs (reflections)