Limit Laws

Limit Rules in Calculus with Examples

Limit Rules in Calculus with Examples

Basic Limit Rules

1. Constant Rule

Rule: \( \lim_{{x \to c}} k = k \)

Example:

\( \lim_{{x \to 4}} 7 = 7 \)

2. Identity Rule

Rule: \( \lim_{{x \to c}} x = c \)

Example:

\( \lim_{{x \to 5}} x = 5 \)

3. Constant Multiple Rule

Rule: \( \lim_{{x \to c}} [k \cdot f(x)] = k \cdot \lim_{{x \to c}} f(x) \)

Example:

\( \lim_{{x \to 3}} 4x = 4 \cdot \lim_{{x \to 3}} x = 4 \cdot 3 = 12 \)

4. Sum Rule

Rule: \( \lim_{{x \to c}} [f(x) + g(x)] = \lim_{{x \to c}} f(x) + \lim_{{x \to c}} g(x) \)

Example:

\( \lim_{{x \to 2}} [x^2 + 3x] = \lim_{{x \to 2}} x^2 + \lim_{{x \to 2}} 3x = 2^2 + 3(2) = 10 \)

5. Difference Rule

Rule: \( \lim_{{x \to c}} [f(x) - g(x)] = \lim_{{x \to c}} f(x) - \lim_{{x \to c}} g(x) \)

Example:

\( \lim_{{x \to 1}} [x^3 - 2x] = \lim_{{x \to 1}} x^3 - \lim_{{x \to 1}} 2x = 1^3 - 2(1) = -1 \)

Power and Root Rules

8. Power Rule

Rule: \( \lim_{{x \to c}} [f(x)]^n = \left[\lim_{{x \to c}} f(x)\right]^n \)

Example:

\( \lim_{{x \to 2}} (x^3) = \left(\lim_{{x \to 2}} x\right)^3 = 2^3 = 8 \)

9. Root Rule

Rule: \( \lim_{{x \to c}} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{{x \to c}} f(x)} \)

Example:

\( \lim_{{x \to 9}} \sqrt{x} = \sqrt{\lim_{{x \to 9}} x} = \sqrt{9} = 3 \)

Special Cases

13. Squeeze Theorem

Rule: If \( h(x) \leq f(x) \leq g(x) \) and \( \lim_{{x \to c}} h(x) = \lim_{{x \to c}} g(x) = L \), then \( \lim_{{x \to c}} f(x) = L \).

Example:

\( \lim_{{x \to 0}} x^2 \sin\left(\frac{1}{x}\right) = 0 \)

14. L’Hôpital’s Rule

Rule: \( \lim_{{x \to c}} \frac{f(x)}{g(x)} = \lim_{{x \to c}} \frac{f'(x)}{g'(x)} \), if the original limit is indeterminate.

Example:

\( \lim_{{x \to 0}} \frac{\sin(x)}{x} = \lim_{{x \to 0}} \frac{\cos(x)}{1} = 1 \)

Trigonometric Limits

15. Basic Trigonometric Limit

Rule: \( \lim_{{x \to 0}} \frac{\sin(x)}{x} = 1 \)

Example:

\( \lim_{{x \to 0}} \frac{\sin(2x)}{2x} = 1 \)

© 2024 'The Study Zone'. All Rights Reserved.