Order of Operations Worksheet

Instructions: Solve each expression using the correct order of operations (PEMDAS: Parentheses, Exponents, Multiplication and Division - left to right, Addition and Subtraction - left to right). Simplify fractions and mixed numbers where necessary. Show your work.

1. Calculate: \(2 + 3 \cdot (4 - 1)^2 \div 5 = ?\)

2. Simplify: \(\frac{5}{8} + \frac{3}{4} \cdot \frac{1}{2} = ?\)

3. Evaluate: \(3^2 \cdot 2 - 4 + \frac{1}{2} \div 2 = ?\)
4. Calculate: \(\frac{3}{4} \cdot \frac{2}{3} + \frac{1}{2} = ?\)

5. Simplify: \(2\frac{1}{2} \cdot 1\frac{3}{4} - \frac{1}{3} = ?\)

6. Evaluate: \(7 - \frac{1}{3} \cdot 2^3 \div 4 = ?\)

7. Calculate: \(\frac{2}{5} \cdot \left(1 - \frac{1}{2}\right) \div \frac{2}{3} = ?\)

8. Simplify: \(\frac{5}{6} - \frac{1}{3} \cdot \frac{2}{9} \div \frac{1}{2} = ?\)

9. Evaluate: \(4^2 \div \frac{1}{4} \cdot 2 = ?\)

10. Calculate: \(\frac{2}{3} + \frac{1}{6} \cdot \left(2^2 - \frac{1}{2}\right) \div \frac{3}{4} = ?\)

11. Simplify: \(3\frac{3}{4} \cdot 1\frac{1}{2} + \frac{1}{3} = ?\)

12. Evaluate: \(\frac{3}{2} \cdot \left(2^2 - \frac{1}{4}\right) \div \frac{3}{4} = ?\)

13. Calculate: \(\frac{1}{3} + \frac{2}{3} \cdot \frac{3}{5} \div \frac{1}{2} = ?\)

14. Simplify: \(2\frac{1}{3} \cdot 3\frac{2}{5} + \frac{1}{4} = ?\)

15. Evaluate: \(5^2 - \frac{1}{2} \cdot 4 + \frac{1}{4} \div 2 = ?\)

Bonus Question: Calculate the following expression, and express your answer as a mixed number:
\(\frac{1}{4} \cdot \left(2^3 + \frac{3}{8}\right) \div \frac{1}{3} = ?\)







--- The Study Zone



Answer Key:
 
1. \(2.6\)
2. \(\frac{19}{16}\)
3. \(\frac{26}{2}\)
4. \(\frac{11}{12}\)
5. \(2\frac{11}{12}\)
6. \(\frac{7}{3}\)
7. \(\frac{3}{5}\)
8. \(\frac{1}{4}\)
9. \(32\)
10. \(\frac{7}{2}\)
11. \(6\frac{1}{4}\)
12. \(5\frac{1}{4}\)
13. \(\frac{7}{6}\)
14. \(8\frac{13}{60}\)
15. \(23.5\)

Bonus Question:

\(6\frac{1}{2}\) ---


©The Study Zone