Trigonomatry-2

Right angled triangle identity: In trigonometry, the most widely used triangle is Right Angled triangle. There are a number of formulas or identities related to right angled triangles, which we will learn about 'Pythagoras Theorem’ in this lesson. 
Identity : For any right-angled triangle, square of the longest side (hypotenuse) is equal to the sum of squares of other two sides (opposite and adjacent). 
 \({h}^\mathbf{2}={a}^\mathbf{2}+{b}^\mathbf{2}\); where h is Hypotenuse 
a is the side opposite to the angle \(\theta \) and b is the side adjacent to angles \(\theta.\) 

The above identity has been proved by a number of Mathematicians but most commonly used proof is derived by Pythagoras. The proof is also known as ‘Pythagoras Theorem’. 

Proof: Consider we have a square as shown in figure. 

\(area\ of\ whole\ square={side}^2\) 
                                    \(={({a}+{b})}^\mathbf{2} \) →(1) 

\(area\ of\ small\ inside\ whole\ square={side}^2\) 
                                    \(={h}^\mathbf{2}\) →(2)

\(area\ of\ each\ triangle =\frac{1}{2}\times base\times height\) 

                                     \(=\frac{1}{2}\times a\times b \) 
                                    
                                     \(=\frac{1}{2}ab\) 

\(area\ of\ 4\ triangle =4\times area\ of\ each\ triangle\) 
                                  
                                     \(=4\times\frac{1}{2}ab \) 

                                    
                                    \(=\mathbf{2}{ab}\) →(3) 

From equations (1), (2) and (3) 

\(Area\ of\ whole\ square\ =\ area\ of\ small\ inside\ square\ +\ area\ of\ 4\ triangles\) 
                                    
                                    \(={({a}+{b})}^\mathbf{2}={h}^\mathbf{2}+\mathbf{2}{ab}\) 
                                   
                                    \(=a^2+b^2+2ab=h^2+2ab\) 

Subtracting 2ab from both sides; 

\(=a^2+b^2+2ab-2ab=h^2+2ab-2ab\) 

\(=a^2+b^2=h^2\) 

\({h}^\mathbf{2}={a}^\mathbf{2}+{b}^\mathbf{2}\) 

Hence the proof.