Least Common Multiple (LCM)- Lesson

LCM is the smallest factor which is common in the given numbers or the smallest common number which can be divided with all the given numbers completely. 
Example: LCM of 4 and 8 
8 is the least common multiple of 4 and 8 

Methods to find LCM: there are 3 methods to find LCM: 

1. Multiplication method: follow the steps given below to find LCM by using this method: 

Step 1: write multiples of the given numbers, until you did not find a common multiple. 
Step 2: identify all the common multiples of the given numbers. 
Step 3: mark the Least common multiple (LCM) 

Example: find LCM of 4 and 8. 
Step 1:     Multiples of 4: 4, 8, 12, 16, 20, 24…….. 
                Multiples of 8: 8, 16, 24, 32……. 
Step 2: Common multiples: 8, 16, 24…. 
Step 3: LCM = 8 

Note: This method is helpful for smaller numbers, if you have numbers with a bigger difference, the calculation can be lengthy. 

2. Division Method (GCF method): this method is applicable only when you have to find the LCM of two numbers. follow the steps given below to find LCM by using this method: 

Step 1: find the GCF of the given numbers. (to know how to find GCF? Click here
Step 2: divide the product of the given numbers with GCF 
Step 3: The quotient is the LCM of the given numbers. 

Example: find the LCM of 6 and 72 
Step 1:          Prime factors of \(6=\ 2\times3\) 
                    Prime factors of \(72=\ 2\times2\times2\times3\times3\) 
                    GCF of 6 and 72 = 6 
Step 2: now divide product of numbers with GCF, as; 
\(\frac{6\times72}{6}=\ 72\) 
Step 3: Lcm of 6 and 72 is 72 

3. Exponential method: follow the steps given below to find LCM by using this method: 

Step 1: find the prime factors of the given numbers and write into exponential form. 
            (to know how to write in exponential form? Click here
Step 2: find the product of all the factors of the given numbers with highest exponent 
            (do not repeat any factor). 
Step 3: the product will be the LCM of given numbers. 

Example: find the LCM of 8, 36 and 72 
Step 1: \(Prime\ factors\ of\ 8=\ 2\times2\times2\) 
                                             \(=2^3\) 
\(Prime\ factors\ of\ 36=\ 2\times2\times3\times3\) 
                                             \(=2^2\times3^2\) 
\(Prime\ factors\ of\ 72=\ 2\times2\times2\times3\times3\) 
                                             \(=2^3\times3^2\) 
Step 2: Product of the factors of all the numbers with highest exponent\(=2^3\times3^2=2\times2\times2\times3\times3\) 
                                         =72 
Step 3: LCM of 8, 36 and 72 = 72 


If the greatest number in the given set of numbers is divisible by the other numbers, then the greatest number will be the LCM of the given numbers. 
Example: find the LCM of 8, 36 and 72 
Now, 72 is divisible by both 8 and 36 Therefore, LCM of 8, 36 and 72= 72